Foreword

Thank you very much for purchasing PI7500 Family Frequency Inverters. This family is designed based on the experience of POWTRAN Company in the professional manufacture and sale of the products, and it is with high performance and with simple functions.

This User's Manual provides the users with the instructions on the installation, parameter setting, fault diagnosis, routine maintenance and necessary precautions. Please read the Manual carefully before the installation of the product in order to ensure that it can be correctly installed and operated.

This User's Manual includes the G series:

G: GENERAL LOAD

Please contact the local dealers or directly contact our company.

Please keep this user's manual in good condition, for it will be helpful to the repair, maintenance, and applications in the future.

For information about other product, please visit our website: <u>http://www.powtran.com</u>.

POWTRAN

2007.4

CONTENTS

SECTION I.	INSPECTION AND SAFETY PRECAUTIONS 1	
SECTION II.	INSTALLATION & STANDBY CIRCUIT 4	ł
SECTION III.	OPERATING KEYBOARD 10	1
SECTION IV.	TEST RUNNING 18	
SECTION V.	FUNCTION PARAMETER TABLE 20	1
SECTION VI.	FUNCTION PARAMETER DESCRIPTION	
SECTION VII.	FAULT DIAGNOSIS AND SOLUTIONS	,
SECTION VIII.	STANDARD SPECIFICATIONS	
SECTION IX.	MAINTENANCE73	
SECTION X.	OPTIONS)

Section I. Inspection and Safety Precautions

POWTRAN PI7500 frequency inverters have been tested and inspected before leaving the manufacturer. Before unpacking the product, please check if its package is damaged due to careless transportation, and if the specifications and type of the product complies with the order. Please contact the supplier of POWTRAN products if any problems are found.

1-1. Inspection after Unpacking

- Inspect that the contents are complete (one PI7500 frequency inverter, one Operation Manual).
- * Check the nameplate on the side of the frequency inverter to ensure that the product you have received is right the one you ordered.

Instructions on name plate: (giving 11.5kW/380V as example)

Section I. Inspection and Safety Precautions

1-2. Safety Precautions

- Never connect the A.C. power supply to the output terminals (U, V, W) of the frequency inverter.
- Fix and lock the panel before supplying power so as to avoid the danger caused by the poor capacity or other components inside the inverter.
- % After the power supply is switched on, do not perform wiring or check, etc.
- Mon't touch the circuit boards or its parts or components in the inverter when it is powered, so as to avoid danger of electric shock.
- If the power supply is switched off, do not touch the PCB or other parts inside the inverter within 5 minutes after the keyboard indicator lamp goes off, and you must check by using the instrument that the inverter has completely discharged all its capacity before you start to work inside the inverter. Otherwise, there will be the danger of electric shock.
- * The static electricity in human body will cause serious damage to the MOS field effect transistor in the inverter. Please keep your hands away from the PCB, IGBT and other internal parts before taking actions to prevent static electricity. Otherwise, faults may be caused.
- In use, the earthing terminal (E or =) of the frequency inverter must be grounded to the earthing connections correctly and securely according to the national electrical safety specifications and other applicable standards.
- Please don't shut off the unit by turning off the power supply. Turn off the power supply after the motor has stopped its operation.
- ※ Meet CE standard with EMI filter.

1-3. Application

- % Powtran inverter is generally applied to 3 phase AC asynchronism motors.
- Powtran inverter is applied to the admisive occasion, the occasion where is not admissive may lead to fire, electric shock, explosion and so on.
- ※ If the inverter seizes up when it is applied to the equipment which may

lead danger (e.g. lift tools of transportation, aviation system, saftety equipment, etc), it should be managed carefully. Do inquire the factory when it happens.

Only the well-trained personnel are allowed to use this unit, and such personnel must read through the parts of this manual relating to the safety, installation, operation and maintenance before using the unit. The safe operation of this unit depends on correct transport, installation, operation and maintenance!

Section II. Installation & Standby Circuit

- 2-1. Conditions for Use
- 1) Ambient temperature $-10^{\circ}C \sim 40^{\circ}C$.
- 2) Avoid electromagnetic interference and keep the unit away from the interference source.
- 3) Prevent dropping water, steam, dust, powder, cotton fiber or fine metal powder from entering it.
- 4) Prevent oil, salt and corrosive gas from entering it.
- 5) Avoid vibration.
- 6) Avoid high temperature and moisture and avoid being wetted due to raining, with the humidity below 90%RH (not dewing).
- 7) Prohibit the use in the dangerous environment where inflammable or combustible or explosive gas, liquid or solid exists.

2-2. Installation

The frequency inverter must be installed by wall hooking in the indoor room with adequate ventilation, with enough space left between it and the adjacent objects or damper (walls) surrounding it, as shown in the below figure:

3

2-3. Wiring

The wiring of frequency inverter includes two parts: main circuit and control circuit. The user must ensure correct connections according to the following connection diagram.

2-4. Main Circuit Terminals:

2-4-1. PI7500 Main Circuit Terminals

Section II. Installation & Standby Circuit

(1)0.4~0.75KW G1

(2) Other types of PI7500

2-4-2. Terminal Function

Terminal	Description	Functions			
R/L1	Device in set (or				
S/L2	Power input for frequency inverter	Connected to 3-phase power (Single input connected to R,T)			
T/L3		(Single input connected to R, T)			
E/PE	Grounding point	Grounded to the earth			
RB, RB'	Connection point for braking resistance				
U/T1					
V/T2	3 Phase Output	Connected to 3-phase motor			
W/T3					

2-5. Control Circuit Terminals

2-5-1 Control Circuit Terminals distribution.

DA1 V1 V2 I2 V3 REV COM FWD JOG SS1 SS2 SS3 FRE +24 SPA TA1 TC1 TB1

2-5-2 Description to Control Circuit Terminals.

Class	Terminal	Description	Function
	СОМ	Common point for control commands	
	FWD	Forward rotation command	F05=1, Edge triggers(F62=0), and runs forward in falling edge, stops in rising edge
			F05=3, Level triggers(F62=0/1/2)
	REV	Reverse rotation command	F05=1, Edge triggers (F62=0), and runs reverse in falling edge, stops in rising edge.
			F05=3, Level triggers(F62=0/1/2)
	JOG	Jog command	Level triggers, and executes JOG command in a lower leve stops in a high level
	001	Multi-step speed/acceleration	F63=1/2,Short-circuited to COM to compose 7-step speed and acceleration, level triggers, effective in a lower level
	SS1	Rising/Falling control	F04=4, for rising control
la		Frequency mode switch	Switch the frequency setting mode with SS2, SS3
Control signal	SS2	Multi-step speed/acceleration	F63=1/2,Short-circuited to COM to compose 7-step speed and acceleration, level triggers, effective in a lower level
CO		Rising/Falling control	F04=4, for falling control
		Frequency mode switch	Switch the frequency setting mode with SS1,SS3
		Multi-step speed/acceleration	Short-circuited to COM to compose 7-step speed and acceleration, level triggers, effective in a lower level
	SS3	JOG control	F63=3 COM is short-circuited to SS3 to execute JOG reverse command, to JOG to execute JOG forward command, and the previous JOG direction is invalid.
	000	Three-line running control	F63=1/2,F62=2 Three-line terminal running for details
		Program running restart	For selecting the program running restart mode
		Rising/Falling control	F04=4, for falling control
		Frequency mode switch	Switch the frequency setting mode with SS1,SS2
	FRE	Free Run	Level triggers, and executes free stop command in a lower level
	RST	Restore	Level triggers, executes restore command in falling edge.
Output signal	TA1/ TB1/TC1	Output signal 5	TA1-TC1 is open and TB1-TC1 is closed (programmable)
si O	SPA/COM	Output signal 1	Output open set signal when action (24VDC/50Ma)

Section II. Installation & Standby Circuit

out	V1,V3	Power Supply	+10V, GND
Analog Input and output signal	V2	Voltage Input signal	Range is adjustable in 0~10V
	12	Current Input signal	Range is adjustable in 0~20mA
	V1	Power Supply of DA1	Used for Power Supply when DA1 selects current output
Analo	DA1	Multi-function analog signal output 1	0~10/1~5VDC 0~20/4~20mA
Auxiliary Power	24V	Power Positive terminal	Maximal output 24V/200mA. COM and V3 could not never
Auxil Pov	COM	Common point	be short-circuited.

2-6. Connection Precautions

- Mon't install power factor capacitance or resistance-capacitance absorbing device between the output terminals U, V, W of the frequency inverter.
- * To disassemble or replace the motor, the input power supply must be turned off for the frequency inverter.
- % The motor or power supply can be switched on/off only after the inverter stops its output.
- In order to minimize the effect of electromagnetic interference, a surge absorbing device should be installed if used electromagnetic contactor and relay, etc. is near to the frequency inverter.
- * For external control of frequency inverter, a isolation device should be used for the control lines or screened cable should be used.
- ※ A screened cable should be used as the signal connection line for input command and must be routed separately as well, and it had better be installed far from the main circuit.
- When the carrier frequency is less than 3kHz, the distance between the frequency inverter and motor must not be greater than 50 meters (maximum). When it is above 4kHz, this distance should be reduced. The cable for this connection had better be laid in metal conduit.
- % If the frequency inverter must be started frequently, don't switch off its

power supply, and the operator must start or stop the inverter by using the COM/FWD of the control terminal or Keyboard, in order to avoid damage to the bridge rectifier.

- ※ Don't connect A.C. input power to the output terminals U, V, W of the frequency inverter.
- * In order to prevent unexpected accidents, earthing terminal E or \pm must be grounded to the earth securely (the grounding resistance should be below 100Ω). The cable size should be greater than half of below- mentioned corresponding cable size; otherwise current leakage will happen possibly.
- ※ For wiring of main circuit, please refer to national rule.
- Capacity of the motor should be equal to or smaller than that of the inverter.

2-7. Standby circuit

When the fault or trip of the inverter may cause great loss or accident, please add the standby circuit.

Note: confirm and test the running characteristic of the standby circuit, in order to ensure the industrial phase and the converter phase are in the same direction.

Section III. Operating keyboard

3-1. Options of internal keyboard and external keyboard.

PI7500 could display on both the internal keyboard and external keyboard

But it could not be operated by the internal keyboard and external keyboard simultaneously. And it could be shifted between these two keyboards by JP3 on the control card.

The internal keyboard's potentionmeter and external keyboard's potentionmeter could not be operated simultaneously, but it could be shifted between these two potentionmeters by JP5 on the control card.

	Status	Function
102	key	Controlled by external keyboard
JP3	board	Controlled by internal keyboard
IDE	key	Controlled by external
JP5	board	Controlled by internal

Function description

Run key:

 \diamond drive forward.

Stop/Reset key:

◇ Drive stops, resets after abnormity and confirms fault.

Parameter Alternation//Acc./Dec Selection:

- \diamond When select parameter, press the SET key and add/reduction key, parameter code add/reduce 10
- \diamond Restore modified value
- \diamond alternate the monitor object and monitor

Escape/display

- ♦ Escape modifying the data of function parameters
- \diamond Escape of submenu or running into menu of status display from function menu
- ♦ Escape of fault status.
- Jog key
- ♦ On: jog
- \diamond Off: stop

LED main display area

- \diamond Anterior 3 digits display the function code
- \diamond $\;$ Latter 4 digits display the value as per the function code

Data unit prompt Light:

It is formed up by 3 instruction light on the right upside of the keyboard, different status indicates different unit of the current parameter displayed in the LED. The units

3-2 PI7500 internal keyboard

This keyboard is the standard one for PI7500 Family inverter.

DATE UNIT PROMPT LIGHT: It is formed up by 3 instruction light on the right upside of the keyboard, different status indicates different unit of the current parameter displayed in the LED .The units for the parameters as blow:

3-3 Optional external keyboard

3-3-1 JP3E7000 keyboard

? Specification and function description:

3-3-2 JP5E7000 Keyboard

? Specification and function description:

Function description

Run key:

 \diamond drive forward.

Stop/Reset key:

 \diamond Drive stops, resets after abnormity and confirms fault.

Parameter Alternation//Acc./Dec Selection:

 \diamond When select parameter, press the SET key and add/reduction key, parameter code add/reduce 10

Section III. Operating keyboard

- $\diamondsuit \quad \text{Restore modified value} \\$
- \diamondsuit alternate the monitor object and monitor

Escape/display

- ♦ Escape modifying the data of function parameters
- \diamond Escape of submenu or running into menu of status display from function menu
- \diamond Escape of fault status.
- Jog key
- On: jog
- Off: stop

LED main display area

- \diamond Anterior 3 digits display the function code
- \diamond Latter 4 digits display the value as per the function code

Data unit prompt Light:

It is formed up by 3 instruction light on the right upside of the keyboard, different status indicates different unit of the current parameter displayed in the LED. The units for the parameters as blow:

3-3-3 JP6E7000, JP6C7000 keyboard

? Specification and function description:

function description

Forward key:

♦ Drive forward.

Reverse key:

Orive reverse.

Stop/Reset key:

◇ Drive stops, resets after abnormity and confirms fault.

Acc. Selection /Parameter setting:

- When select parameter, press the SET key and add/reduction key, parameter code add/reduce 10
- \diamond Restore modified value
- \diamond alternate the monitor object and monitor

Escape/display

- ♦ Escape modifying the data of function parameters
- Escape of submenu or running into menu of status display from function menu
- ♦ Escape of fault status.

Jog key

On: jog

Section III. Operating keyboard

◇ Off: stop

The upper LED main display area

 Display frequency, current, voltage, etc. Also display fault code, password right FWD/REV Indication light

Display motor's running state: forward or reverse.

The nether LED main display area

- \diamond Display function code
- ♦ Display set frequency during running

JP6E7000 is standard keyboard for PI7000, PI7100 Family inverter.

JP6C7000 keyboard has the same structure and instruction with those of JP6E7000. The difference is that the lower LED display is changed into LCD display which displays the state and parameters in English. JP6C7000 is the optional keyboard for PI7000, PI7100. The following diagram is the description to JP6C7000 LCD display:

For the 4 keypads, when the keypad is unlocked, press the and simultaneously for 3 seconds, the keypad is locked, LED displays normally after displaying "LoC" for 2 seconds; when the keypad is locked, press the and simultaneously for 3 seconds, the keypad is unlocked, LED displays normally after displaying "ULoC" for 2 seconds.

3-4 Parameters set mode

- e.g. 1 Modify acceleration time F09=5.0 to F09=25.0:
 - 1. With F00 mode, press ▲ selecting F09, upper LED displays 5.0.
 - 2. Press PRG for 3 times, upper LED ten digits "0" flashes.
 - 3. Press ▲ for twice, upper LED ten digits displays "2".
 - 4. Press SET confirming value modification.

e.g. 2 Modify o15=0 to o15=1

- 1. With F00, press ▼ selecting F69.
- 2. Press PRG entering I/O group parameters menu.
- 3. Press ▼ selecting o15.
- 4. Press PRG once modifying o15.
- 5. Press ▲ once, upper LED flashes "1".
- 6. Press SET confirming value modification.

Section IV. Test running

- Before connecting the power supply with the frequency converter, confirm that the input voltage of AC power is within the rated input voltage of the frequency converter.
- Connect the power supply with the R, S and T terminals of frequency converter (connect with R and S terminals for single-phase input).
- Select the proper operation control method.

e.g.: analog voltage input + keyboard /terminal operating (<u>Pr.F04</u>=1, <u>Pr.F05</u>=1).

The frequency command is controlled by terminal V2, and the operation is controlled by the keyboard and terminal FWD $\$ REV.

e.g.: keyboard adjust speed + keyboard operating (Pr.F04=0, Pr.F05=0)

The frequency command is controlled by the key , and operation is controlled by the key FWD, REV controlling the forward and reverse.

Section IV. Test running

- % Running the unit without load, regulate the speed and check.
- % Confirm the min. and max values of the set output frequency.
- ※ Check JOG control.
- % Confirm the acceleration and deceleration time.
- % Connect with the motor.
- % Run the motor at low speed and check its rotation direction.
- % Check if all the displays and outputs during the operation are correct.

Section V. Function parameter table

5-1. Basic Parameters

Ref	LCD keyboard explanation	3		Unit	Factory setting	Y/N	
		Set frequency	0				
		Actual frequency	1				
		Motor actual current	2				
		Actual current percent	3				
		DC Bus voltage	4				
		Actual output voltage	5				
F00	monitor select	Actual motor speed	6	-	0	Y	
		Total running time	7				
		IGBT temperature	8				
		*reserved	9				
		*reserved	10				
		Motor output power	11				
		*reserved	12~15				
F01	control methods	No PG V/F control	0	-	0	Ν	
F02	set frequency	Lower frequency~Upper	F03=0	Hz	50.00	Y	
102	serirequency	frequency	F03=1	112	500.0	1	
F03	fre. multiple set	×1	0	_	0	N	
105	ire. multiple set	×10	1	_	0	IN	
		Keypad	0				
		V2	1				
		12	2				
		V2+I2	3				
F04	fre. set mode	Ascend/Descend control	4	_	0	N	
104	iic. Set mode	Program running	5	_	0	IN	
		Traverse running	6				
		*reserved	7				
		Keypad potentionmeter set	8				
		V2 Forward/Reverse set	9				

20

		Keypad potentionmeter FWD/REV set	10			
		*reserved	11			
		*reserved	12			
		Up/Down control mode 2	13			
		Keypad	0			
		Keypad + terminal	1			
F05	run control mode	*reserved	2	-	0	Y
		terminal	3			
		*reserved	4			
		Asynchronous space vector PWM	0			
F06	waveform mode	Stepless & subsection synchronous space vector PWM	1	-	1	Ν
		2 phase optimized space vector PWM	2			
F07	auto.torque boost	0~10		%	0	Y
F08	V/F boost mode	0~61		-	2	Ν
F09	accelerate time	0.1~3200.0		S	10.0	Y
F10	decelerate time	0.1~3200.0		S	10.0	Y
F11	slip compensate	0~10		%	0	Ν
F12	O.P. voltage ratio	50~110		%	100	Ν
F13	max. frequency	10.00~300.00	F03=0	Hz	50.00	N
110	max. nequency	100.0~800.0	F03=1	112	500.0	
F14	basic frequency	5.00~ F13	F03=0	Hz	50.00	N
		50.0~ F13	F03=1		500.0	
F15	carrier frequency	1.0~16.0		kHz	*	Y
F16	Lower frequency	0.00~ F17	F03=0	Hz	0.00	Ν
1.10		0.0~ F17	F03=1	112	0.0	
F17	upper frequency	F16~F13	F03=0 F03=1	Hz	50.00 500.0	Ν
F18	S curve acc. start	0.0~50.0		%	0.0	Y
F19	S curve acc. stop	0.0~50.0			0.0	Y
F20	S curve dec. start	0.0~50.0			0.0	Y
F21	S curve dec. stop	0.0~50.0		%	0.0	Y

Section V. Function parameter table

F22	min. running fre.	0.00~ F13	F03=0	Hz	0.00	N	
1 2 2	Ű	0.0~ F13	F03=1	112	0.0		
F23	DC brake current	0~135		%	100	Y	
F24	start brake time	0.0~60.0		S	0.0	Ν	
F25	stop brake time	0.0~60.0		S	0.0	Ν	
F26	brake start fre.	0.00~F13	F03=0	Hz	0.00	Y	
120	brake start lie.	0.0~F13	F03=1	ΠZ	0.0	1	
F27	stopping mode	Deceleration stop	0	-	0	N	
127	stopping mode	Free stop	1	-	0	IN	
F28	jog acc. time	0.1~3200.0		S	1.0	Ν	
F29	jog dec. time	0.1~3200.0		S	1.0	Ν	
F30	jog direction set	Forward	0		0	Ν	
F 30	Joy unection set	Reverse	1	-	0	IN	
F31	log froguonov cot	F16~F17	F03=0	Ц-	6.00	Y	
F31	jog frequency set	F10~F1/	F03=1	Hz	60.0		
F32	traverse fre. 1	F33~F17	F03=0	Ц-	40.00	Y	
F3Z	traverse fre. 1		F33~F1/	F03=1	Hz	400.0	ř
F33	traverse fre. 2	traverse fre. 2 F16~F32	F03=0	Hz	20.00	Y	
гээ	lidverse lie. Z	F10~F32	F03=1	ПΖ	200.0	T	
F34	traverse differ.	0.00~5.00	F03=0	Hz	2.00	Y	
г 34	lidverse unier.	0.0~50.0	F03=1	ПΖ	20.0	T	
F35	traverse time T1	0.0~3200.0		S	2.0	Y	
F36	traverse time T2	0.0~3200.0		S	2.0	Y	
F37	skip frequency 1	0.00~F13	F03=0	Hz	0.00	Y	
137	Skip frequency f	0.0~F13	F03=1	TIZ	0.0	I	
F38	skip frequency 2	0.00~F13	F03=0	Hz	0.00	Y	
1.30	Skip frequency z	0.0~F13	F03=1	ΠZ	0.0	1	
F39	skip frequency 3	0.00~F13	F03=0	Hz	0.00	Y	
1 37	Skip liequency 3	0.0~F13	F03=1	I IZ	0.0	1	
F40	skip frequency	0.00~5.00	F03=0	Hz	0.00	Y	
140	range	0.0~50.0	F03=1	1 IZ	0.0	I	
		Invalid	0				
F41	auto. Voltage	Valid	1	_	0	Y	
1 1 1	regulation	Valid but invalid when decelerating	2	-	0	1	

21

			Invalid		0			
F42	OU stall protect		Valid		1	-	1	Y
			Invalid		0			
F43	current limit		Valid			-	0	Y
			Invalid		1 0			
E 4 4	unto topolo o do ot	Pick up m		power	-		0	N
F44	rate track select	1	down		1	-	0	Ν
		Pick up n	node whe	n start	2			
F45	elec. o.h. protect		Invalid		0		1	Y
145	elec. U.II. protect		Valid		1	-	1	I
F46	protect level		120~2	250		%	*	Ν
			Invalid		0			
F47	consumed brake	Sa	afe mode		1	-	0	Y
		Ger	neral mod	5	2			
F48	Fault reset times		0~1	0		-	0	Ν
F49	Fault reset time		0.5~2	0.0		S	1.0	Ν
		Single circulation			0			
F50	Program running	Continuous circulation			1	-	0	Ν
1.00	mode	Single circ		mmand	2		-	
			running					
F51	Destart mode		s at step		0		0	Ν
FOI	Restart mode		the step b topping	efore	1	-	0	IN
F52	*reserved		-			-	-	-
F53	*reserved		-			-	-	-
554			ommand,r orwards	notor	0		0	N
F54	Motor run direction		ommand,r everses	notor	1	-	0	N
	Motor reverse		se allowa	ble	0			
F55	forbidden	Reverse forbidden		1	-	0	Ν	
		Acc/dec	Tens	Run	Unit			N
		time	digit	time *1			0	
F56	Running time setting	*1	0	*1	0			
		*30	1	*10	1			
				*100	2			

Section V. Function parameter table

	0/ in onormy coving						
F57	% in energy saving energy	30~100		%	100	Ν	
F58	FDT fre. set 1	F59~ F13	F03=0	Hz	0.00	Y	
гэо	FDT lie. Set T	F59~ F13	F03=1	ΠΖ	0.0	T	
F59	FDT fre. set 2	CDT fra cot 2 0.00~ F58 F03=0	Hz	0.00	Y		
F09	FDT IIE. SELZ	0.0~ F58	F03=1	ΠZ	0.0	ř	
F60	Fre. Inspection	0.00~5.00	F03=0	Hz	0.00	Y	
FOU	range	0.0~50.0	F03=1	ΠΖ	0.0	T	
		General	0				
		Water Pump	1	-			
		Blower fan	2				
		Plastic jetting mould machine	3				
F61	Load type	Braiding machine	4		0	Ν	
		Hoister	5				
		Pumping jack	6				
		Belt conveyor	7				
		*reserved	8~14				
	Terminal control modes	Standard running control	0		0		
F62		2-point running control	1	-		Ν	
	modes	3-point running control	2				
		Invalid	0				
		MSS multi-step speed control	1				
		MSS multi-step acceleration control	2				
F63	MSS terminal function selection	JOG forward/ reverse control	3	-	0	Ν	
	TUTICITOTI SETECTION	Frequency set mode shift	4				
		*reserved	5				
		MSS time running	6				
		*reserved	7				
F64	Polarity of input terminal	0~127		-	0	Ν	
		Set frequency	0				
F65	Monitor sel. 1	Actual frequency	1	-	1	Y	
F66	Monitor sel. 2	Actual motor current	2	-	2	Y	
		Current percentage	3				

		DC bus voltage	4		
		•	-		
		Output voltage	5		
		Actual motor rotating speed	6		
		Accumulated running time	7		
		IGBT temperature	8		
		*reserved	9		
		*reserved	10		
		Motor output power	11		
		*reserved	12~15		
F67	V/F curve set				
F68	MSS speed control				
F69	I/O group select				
F70	CUR group select	Press			Y
F71	SPD group select	[PROG/ENT]		-	I
F72	PID group select				
F73	SYS group select				
F74	MOT group select				

5-2. Other Parameters

5-2-1. F67 V/F curve [V/F]

Ref	LCD keyboard explanation	Range of set value			Factory setting	Y/N
U00	V/F set fre 1	0.00~U02	F03=0	Hz	5.00	Ν
000	VII Sellie I	0.0~U02 I	F03=1	TIZ	50.0	IN
U01	V/F set voltage 1	0~U03		%	5	Ν
U02	V/F set fre. 2	U00~U04	F03=0	Hz	10.00	Ν
002	V/I Set IIe. Z	F03=1		TIZ	100.0	IN
U03	V/F set voltage 2	U01~U05		%	10	Ν
U04	V/F set fre. 3	U02~U06	F03=0	Hz	15.00	Ν
004	V/I Set lie. 5	002~000	F03=1	TIZ	150.0	IN
U05	V/F set voltage 3	U03~U07		%	15	Ν
U06	V/F set fre. 4	U04~U08	F03=0	=0 Hz	20.00	N
000	V/I Set IIe. 4	004~000	F03=1	TIZ	200.0	IN
U07	V/F set voltage 4	U05~U09		%	20	Ν
U08	V/F set fre. 5	U06~U10	F03=0	Hz	25.00	Ν

Section V. Function parameter table

			F03=1		250.0		
U09	V/F set voltage 5	U07~ U11		%	25	Ν	
U10	U10 V/F set fre. 6	U08~U12	F03=0	Hz	30.00	N	
010	V/I Set lie. 0	008~012 F	F03=1	I IZ	300.0	IN	
U11	V/F set voltage 6	U09~U13		%	30	Ν	
U12	V/F set fre. 7	7 U10~U14 -	V/E set fro. 7	F03=0	Hz	35.00	N
012	V/I Set IIe. /		F03=1	ΠZ	350.0	IN	
U13	V/F set voltage 7	U11~U15		%	35	Ν	
U14	V/F set fre. 8	U12~F13	F03=0	Hz	40.00	N	
014	V/F Set IIe. 8	012~F13	F03=1	ΠZ	400.0	IN	
U15	V/F set voltage 8	U13~100		%	40	Ν	

5-2-2. F68 MSS group [MSS]

Ref	LCD keyboard explanation	Range of set value		Unit	Factory setting	Y/N
H00	1 step speed 1X	F16~F17	F03=0	Hz	5.00	Y
1100	T Step Speed TX	110 1 17	F03=1	112	50.0	'
H01	2 step speed 2X	F16~F17	F03=0	Hz	30.00	Y
1101	2 3100 30000 2/	110 117	F03=1	112	300.0	
H02	3 step speed 3X	F16~F17	F03=0	Hz	20.00	Y
1102	5 Step Speed 5X	110-117	F03=1	112	200.0	1
H03	4 step speed 4X	F16~F17	F03=0	Hz	30.00	Y
1103	4 Siep Speed 4A		F03=1	112	300.0	1
H04	5 step speed 5X	F16~F17	F03=0	Hz	40.00	Y
1104			110~117	F03=1	112	400.0
H05	6 step speed 6X	F16~F17	F03=0	Hz	45.00	Y
1105	o sich sheed ov	110~117	F03=1	112	450.0	1
H06	7 step speed 7X	F16~F17	F03=0	Hz	50.00	Y
1100	7 Step Speed 7X	1 10~1 17	F03=1	TIZ	500.0	I
H07	1 step time T1	0.0~3200.0		S	2.0	Y
H08	2 step time T2	0.0~3200.0		S	2.0	Y
H09	3 step time T3	0.0~3200.0		S	2.0	Y
H10	4 step time T4	0.0~3200.0		S	2.0	Y
H11	5 step time T5	0.0~3200.0		S	2.0	Y
H12	6 step time T6	0.0~3200.0		S	2.0	Y

H13 7 step time T7 0.0~3200.0 Υ 2.0 S H14 10.0 Y acc. time at1 0.1~3200.0 S H15 dec. time dt1 0.1~3200.0 10.0 Υ S H16 Υ acc. time at2 0.1~3200.0 10.0 S H17 dec. time dt2 0.1~3200.0 10.0 Υ S H18 Υ acc. time at3 0.1~3200.0 10.0 S H19 10.0 Υ dec. time dt3 0.1~3200.0 S Υ H20 acc. time at4 0.1~3200.0 10.0 S H21 dec. time dt4 0.1~3200.0 10.0 Υ S H22 Υ acc. time at5 0.1~3200.0 10.0 S H23 dec. time dt5 0.1~3200.0 10.0 Υ S Υ H24 acc. time at6 0.1~3200.0 10.0 S H25 Υ dec. time dt6 0.1~3200.0 S 10.0 H26 acc. time at7 0.1~3200.0 10.0 Υ S H27 Υ dec. time dt7 0.1~3200.0 10.0 S Forward 0 Multi-step speed 1 H28 0 Υ running direction Reverse 1 Multi-step speed 2 Forward 0 H29 Υ 0 running direction 1 Reverse Multi-step speed 3 Forward 0 H30 Υ 0 running direction Reverse 1 Forward 0 Multi-step speed 4 H31 Υ 0 running direction Reverse 1 0 Forward Multi-step speed 5 H32 0 Υ running direction 1 Reverse Multi-step speed 6 Forward 0 H33 Υ 0 running direction. Reverse 1 Multi-step speed 7 Forward 0 H34 0 Υ running direction Reverse 1

5-2-3. F69 I/O group [I/O]

Ref	LCD keyboard explanation	Range of set value	Unit	Factory setting	Y/N
000	V2 input filter time	2~200	ms	10	Y

Section V. Function parameter table

o01	V2 min. input voltage	0.00~002		V	0.00	Υ
o02	V2 max. input voltage	001~10.00		V	10.00	Υ
003	I input filter time	2~200		ms	10	Y
004	I input min. current	0.00~005		mA	0.00	Y
005	I input max. current	004~20.00		mA	20.00	Y
		No Function	0			
		Set frequency	1			
		Actual frequency	2			
		Actual current	3			
006	DA1 Ouput	Output voltage	4	-	0	Y
*007	Reserved	Bus voltage	5	-	-	-
		IGBT temperature	6			
		Output power	7			
		Output speed				
		*reserved	9			
008	DA1 output lower adjustment	0~009		%	0.0	Υ
009	DA1 output upper adjustment	008~100.0		%	100.0	Υ
*o10	reserved	-		-	-	•
*011	reserved	-		-	-	-
*012	reserved	-		-	-	-
		No function	0			
		Fault alarm	1			
		Over current inspection	2			
013	O.P. signal sel. 1	Over load inspection	3	-	0	Y
*o14 *o15	*reserved *reserved	Over voltage inspection	4	-	-	-
*015	*reserved	Lack voltage inspection	5	-	-	-
017	O.P. signal sel. 5	Low load inspection 6		-	0	Y
*018	* reserved	Over heat inspection	7	-	-	-
		Running state with command	8			
		*reserved	9			
		Motor reverse	10			

		Set frequency arrival	Τ	11			
		Upper limit frequency		12			
		Lower limit frequency		13			
		FDT frequency 1 arrival		14			
		FDT frequency level inspect	tion	15			
		0 speed running		16			
		Position arrival		17			
		*reserved		18			
		Program running 1 cycle finished	:	19			
		Speed pursue mode inspect	tion	20			
		Running state without command		21			
		Inverter reverse command	d	22			
		Deceleration running		23			
		Acceleration running		24			
		* reserved		25			
		* reserved		26			
		Inverter's rated current arriv	val	27			
		Motor's rated current arriva	al	28			
		Set fre. arrives lower fre.		29			
		FDT frequency set 2 arrive	es	30			
		* reserved		31			
		* reserved		32			
019	Minimum input	0.00~F13 F03			-	0.00	Y
017	frequency	0.0~F13	F03			0.0	•
020	Maximum input	0.00~F13	F03		-	50.00	Y
020	frequency	0.0~F13	F03	3=1		500.0	•

*5-2-4. F70 CUR group [CUR], reserved

*5-2-5. F71 SPD group [SPD], reserved

*5-2-6.F72 PID group [PID], reserved

5-2-7. F73 SYS group [SYS]

Section V. Function parameter table

Ref	LCD keyboard explanation	Range of set value			Unit	Factory setting	Y/N
y00	Restore factory	No rese		0	_	0	Ν
yuu	setting	Instant re	eset	1	-	0	IN
y01	fault record 1						
y02	fault record 2	Press [PRG] an					
y03	fault record 3	current and runr		f fault time	-	-	Ν
y04	fault record 4	can	be known.				
y05	fault record 5			-			
y06	Fault record reset	No activ	ity	0		0	Y
yuu	T duit record reset	Reset		1	-	0	I
y07	rated O.P. current	0.1	~1000.0		А	*	Ν
y08	rated I.P. voltage	1(00~380		V	*	Ν
		75	1	3			
y09	product series	Family serial	Function code	Input voltage level	-	*	Ν
y10	software version		-	•	-	-	Ν
*y11	Reserved		-		-	-	-
*y12	Reserved		-		-	-	-
y13	total time set	Clear automatically after starting		0	_	- 1	Y
y i S		Continuous acc after star		1	_	1	1
y14	total time unit	Hour		0		0	Y
y 14		Day		1	-	0	1
y15	Manufacture date	,	YYYY		-	-	Ν
y16	making month/day	Ν	/MDD		-	-	Ν
		0~999	9	set range			
y17	decode input	Record of times	s of wrong	display	-	-	Y
		decode	e	content			
		0~999	9	set range			
y18	password input	No setting password or Input decode correct	deco	display content	-	-	Y
		Parameters locked	code				

5-2-8. MOT group [MOT]

Ref	LCD keyboard explanation	Range of set valu	Unit	Factory setting	Y/N	
b00	motor poles	1~8		-	2	Ν
b01	motor rated cur.	y07×(30%~120%)		Α	*	Ν
b02	motor rated vol.	100~380		V	*	Ν
b03	motor rated speed	500~5000		rpm	1500	Ν
b04	motor rated	0.00~F13	F03=0	%	50.00	N
004	frequency	0.0~F13	F03=0	70	500.0	IN
b05	Motor un-load cur.	0~b01		А	*	Ν
b06	stator resistor	0.000~30.000	0.000~30.000		*	Ν
b07	rotor resistor	0.000~30.000		ohm	*	Ν
b08	leakage inductance	0.0~3200.0		mН	*	Ν
b09	mutual inductance	0.0~3200.0		mН	*	Ν
*b10	reserved	-		-	-	-
*b11	reserved	-		-	-	-
*b12	reserved	-		-	-	-
*b13	reserved	-		-	-	-
b14	Rotate speed display plus	0.1~2000.0		%	100.0	Y
*b15	reserved	-		-	-	-
b16	reserved	0		-	0	Ν
b17	reserved	0		-	0	Ν

NOTE:

- 1) Y/N means the parameter is adjustable or not during running, Y means it is adjustable, N means it is not.
- ★ means the parameter's factory setting is affected by the power and type. The value refers to the parameters description.
- 3) *means the function is invalid but reserved.

Section VI. Function Parameter Description

6-1. Basic parameter: F00: Monitor selection

factory setting: 0

The value range is 0~15 monitoring 0~15 different objects under running.

Monitor objects under running

0: Set frequency

Set frequency under frequency setting mode.

1: Actual frequency

Current output frequency.

2: Motor actual current

Detected value of motor's current.

3: Actual current percentage

Percentage of motor's actual current and rated current.

4: DC bus voltage

Detected voltage of DC bus.

5: Output voltage

Actual output voltage of inverter.

6: Actual motor speed rpm

During running, the display of the adjusted motor's actual rotate speed=60 × Actual output frequency × Rotate speed display plus/Motor poles

e.g. Actual output frequency50.00Hz, Rotate speed display plus b14=100.0%, Motor poles b00=2, the display of the adjusted motor's actual rotate speed=1500rpm.

During stopping state, checking the motor speed according to residual stress, renewed speed 500ms.

The display of the adjusted motor's actual rotate speed=60 × residual stress frequency × rotate speed display plus/Motor poles

7: Total running time

This parameter indicates the total running time, and the unit is hour or day.

e.g. If led display value is 10.31, y14 is 0, the actual running time of the machine is 10 hours,18 minutes and 36 seconds; if led display value is 20.03 and y14 is 1, the actual running time of the machine is 20 days,43 minutes and 12 seconds.

8: IGBT temperature

Detected IGBT temperature inside inverter.

*9~15: Reserved.

Section VI. Function Parameter Description

SS1		Ascend control is to change the frequency increased						
SS2	Desce	Descend control is to change the frequency reduced, has precedence over SS1.						
SS3	ON	During stopping state, change the frequency caused by SS1/SS2and turn it to F31 jog frequency.						
	OFF	During stopping state, keep the frequency caused by SS1/SS2						

5: Program Running

No limitation of the reverse forbidden. Its running direction is set by multi-step speed running direction.

6: Traverse running

Running by setting traverse.

*7:Reserved.

8: Keypad potentiometer set

Frequency set by the potentiometer on the keypad.

9. V2 Forward/Reverse set

Anolog input signal V2 is to the signal to forward/reverse frequency, when V2 is larger than o01 (V2 minimum input voltage), it is the signal to forward frequency; when V2 is smaller than o01, it is the signal to reverse frequency.

*11~12: Reserved.

13. Up/Down control mode 2

F05: Running control mode

factory setting: 0

0: Keypad control

- 1: Keypad + terminal control control To terminal control, edge triggers, Execute FOR/REV command in falling edge and execute STOP command in rising edge. Note: F62=0 is valid.
- *2: Reserved.

F01: Control mode

This parameter values 0.

0: Without PG V/F control. V/F space voltage vector control.

F02: Set frequency

factory setting: 50.00/500.0Hz

Setting running frequency can be from lower frequency to upper frequency.

F03: Frequency multiple setting factory setting: 0

0: Set frequency display accuracy is 0.01Hz. With this accuracy, F13 maximum frequency range is 10.00~300.00Hz.

1: Set frequency display accuracy is 0.1Hz. With this accuracy, F13 maximum frequency range is 100.0~800.0Hz.

F04: Frequency setting mode

factory setting: 0 Frequency setting modes can be set by the value 0~10, as following:

- 0: Keypad set
- 1: Set frequency by analog input V2
- 2: Set frequency by analog input I2
- 3: By analog input V2 and I2 simultaneity
- 4: Ascend/Descend control

SS1 ON OFF ON time SS2 OFF OFF ON time **SS**3 ON OFF time RUN STOP time output frequency target frequency= frequency before stop target frequency=F31 upper limit setting JOG frequency frequency lower limit frequency time SS1,SS2 valid in high level

This function is to control ascend/descend and target frequency with the terminals SS1.SS2.SS3.

It is OFF when SS1, SS2, SS3 are disconnected with COM, ON when they are short-circuited.

3: Terminal, level triggers. F62=0/1/2 is valid.

*4: Reserved.

F06: Waveform occurrence mode

factory setting: 1

PWM waveform occurrence mode 0: PWM Asynchronous space vector.

- 1: Step less & subsection synchronous space vector PWM, harmonic wave minimized, symmetric output waveform.
- 2: 2 phase optimized space vector PWM, switch loss minimized, asymmetry output waveform.

F07: Auto torque boost

factory setting: 0%

The parameter is used to improve the inverter characteristic in lower frequency, and boost output voltage when the inverter is running in low frequency.

The calculating form is:

boost voltage =motor rated voltage × (inverter actual output current / 2 times of motor rated current) × F07

F08: V/F boost mode

factory setting: 2

T Totally 62 V/F boost modes, there into 0~20 for constant torque load, 21~40 for 1.5 power descending torque load, 41~50 for square descending torque load, 51~60 for cube descending torque load, 61 is user-defined.

F09: Acceleration time

factory setting: 5.0s

Acceleration time is the time from 0Hz to maximum frequency, as below:

F10: Deceleration time

factory setting: 5.0s

Deceleration time is the time from maximum frequency to 0Hz, as below:

Actual acc/dec time equals to the set acc/dec time multiples a time multiple which is decided by the tens digit of F56. Please refer to F56.

F11: Slip compensate

factory setting: 0%

When drives drive the asynchronous motor, the load is added, slip enhanced, this parameter can set compensate frequency, reduce slip, so that the motor runs much closer to the synchronous speed under rated

current. If the value set to 0, no slip compensation functions.

This function is based on correctly setting b01 motor's rated current, b05 motor's current without load.

The calculating form is:

Compensate frequency=Slip compensate × Rated frequency

I_{MX}: Motor actual working current

I_{MN}: Motor rated current

 I_{M0} : Motor current without load

F12: Output voltage percentage factory setting: 100%

Percentage of actual output voltage and rated output voltage

This parameter is for adjusting output voltage, output voltage=inverter rated output voltage × output voltage percentage.

F13: Maximum frequency factory setting: 50.00/500.0Hz

Allowable maximum frequency by Inverter's adjusting speed, also the base for setting acceleration/deceleration time.

Setting this parameter should consider the characteristic and ability of motor.

F14: Basic frequency

factory setting: 50.00/500.0Hz

This function is for motors with different base frequency. Basic V/F feature curve:

F15: Carrier frequency

factory setting: refer to following table

This function is chiefly used to improve the possible noise and vibration during the operation of frequency converter. When carrier frequency is higher, the output current has better wave, the torque is great at lower frequency and the motor produces light noise. So it is very suitable for use in the applications where great torque is output at low frequency quietly. But in these applications, the damage to the switches of main components and the heat generated by the inverter are great, the efficiency is decreased and

Section VI. Function Parameter Description

the output capacity is reduced. At the same time, more serious radio interference is resulted and special attention must be paid for application where very low EMI is needed, and filter option can be used if necessary. Another problem for application of high carrier frequency is the increase of capacitance-leakage current. The protector for leakage current may invalidate function, and over current is also possibly caused.

When low carrier frequency is applied, the case is almost contrary to the above-mentioned one.

Different motor has different reflection to the carrier frequency. The best carrier frequency is gained after regulation according to actual conditions. The higher the motor capacity is, the lower the carrier frequency should be selected.

The company reserves the right to limit maximum carrier frequency as following:

Carrier frequency	Motor noise	Electric disturbance	Switch dissipation
1.0kHz	Great	Small	Small
8.0kHz	\updownarrow	\uparrow	\updownarrow
16.0kHz	Small	Great	Great

The relation between carrier frequency and the power is expressed as following:

Power (kW)	0.4~18.5	22~30	37~55	75~110	132~200	220 above (including 220)
Carrier frequency (Hz)	8.0k	7.0k	4.0k	3.6k	3.0k	2.5k

Note: The higher carrier frequency causes the higher converter heat.

F16: Lower limit frequency Lower limit of output frequency.

factory setting: 0.00/0.0Hz

F17: Upper limit frequency

Upper limit of output frequency.

factory setting: 50.00/500.0Hz

When the frequency setting command is greater than upper limit, the operation frequency is the upper limit. When the frequency setting command is below the lower limit, the operation frequency is the lower limit. When starting the standstill motor, the frequency converter's output is accelerated towards the lower limit or set value from 0Hz according to the accelerate towards 0Hz according to the deceleration time.

F18: S curve start time at the acceleration step F19: S curve stop time at the acceleration step F20: S curve start time at the deceleration step F21: S curve stop time at the deceleration step factory setting: 0.0% factory setting: 0.0% factory setting: 0.0% factory setting: 0.0%

1. Slope of output frequency is enhanced from 0 to maximum level.

2. Slope of output frequency at the constant level.

3. Slope of output frequency is reduced from maximum level to 0.

If setting S curve acceleration/deceleration, the acceleration/deceleration time is calculated as:

Acceleration time=Selected acceleration time+ (S feature time at the beginning of acceleration + S feature time at the end of acceleration) ×2 That is: Acceleration timeT1=F09+ ((F09×F18)+(F09×F19)) ×2

Deceleration time=Selected deceleration time+ (S feature time at the beginning of deceleration + S feature time at the end of deceleration) ×2 That is: Deceleration timeT2=F10+ ((F10×F20)+(F10×F21)) ×2

F22: Minimum running frequency factory setting: 0.00/0.0Hz Inverter stops when the set frequency is lower than the minimum running frequency, that is: set frequency is 0.0Hz when set frequency is lower than the minimum running frequency.

Section VI. Function Parameter Description

"Minimum running frequency" is in priority rather than "Lower frequency". "Lower frequency" is in priority only with the set minimum running frequency 0Hz.

F23: DC braking current

factory setting: 100%

This parameter set the percentage of DC braking current at DC braking. It is based on the rated current (inverter's rated current percentage). When setting it, do increase the value gradually until it provides enough braking torque.

F24: DC braking time when starting factory setting: 0.0s

Standing time of DC braking voltage when starting.

F25: DC braking time when stopping factory setting: 0.0s Standing time of DC braking voltage when stopping.

factory setting: 0.00/.00Hz

F26: Braking start up frequency When the frequency converter decelerates to this frequency, it stops the output of PWM waves, and then starts to output the D.C. brake wave.

stop braking (RUN→STOP)

factory setting: 0

When receiving "stop" command, it sets the stop mode according to this parameter.

- 0: Deceleration stop mode, according to the deceleration time set by this parameter, inverter decelerates to the lowest frequency and stops.
- 1: Free stop mode. "Stop" command to the inverter, it stops output, motor runs free until stops due to the effects of load inertia.

Section VI. Function Parameter Description

F28: Jog acceleration time F29: Jog deceleration time

factory setting: 1.0s

factory setting: 1.0s

Jog acceleration time defines the same step acceleration/deceleration.

Actual jog time equals to the set acc/dec time multiples a time multiple which is decided by the tens digit of F56. Please refer to F56.

F30: Jog direction set

0: Forward 1: Reverse

factory setting: 0

factory setting: 6.00/60.0Hz

F31: Jog frequency set

Jog frequency setting range is from lower limit frequency to upper limit frequency.

F32: Traverse running frequency f1

F33: Traverse running frequency f2

F34: Traverse running difference $\triangle f$

factory setting: 20.00/200.0Hz factory setting: 2.00/20.0Hz factory setting: 2.0s

factory setting: 40.00/400.0Hz

F35: Traverse running timing T1 F36: Traverse running timing T2

factory setting: 2.0s

Calculating acceleration/deceleration time with f1, f2, \triangle f, T1, T2.

42

F38: Skip frequency 2

F39: Skip frequency 3

F40: Skip frequency range

factory setting: 0.00/0.0Hz factory setting: 0.00/0.0Hz

During running, to skip resonance produced by the immanent resonance point in the machine system, skip mode can do this.

At most 3 resonance points can be set to skip.

frequency setting signal

Skip frequency range is the up and down frequency range on the base of skip frequency.

During acc/dec, the output frequency could normally go through the skip frequency area.

F41: Automatic voltage regulation

factory setting: 0

CPU automatically inspects the DC bus voltage and deal with it at the real time, when electric network voltage fluctuates, output voltage fluctuation is very small, and the V/F feature always is close to the setting state with rated input voltage.

0: Invalid

1: Valid

2: Invalid but useless when deceleration

Section VI. Function Parameter Description

1: Valid

When this function is valid and the frequency converter decelerates, the motor generates voltage back to the inside of frequency converter due to the effects of load inertia. This will lead the voltage on direct current side to rise above the allowable max. Value, therefore, at this time the inverter will stop deceleration (output frequency remains unchanged) and will not decelerate until the voltage is below the set value.

This function should be set to 0 for B type frequency converter or frequency converter with external braking unit.

F43: current limit function

factory setting: 0

0: Invalid 1: Valid

When this function is valid and the frequency converter accelerates, its output current will rise very quickly due to too fast acceleration or too heavy load of the motor. When the current exceeds the limited value (G/S: 140% of the rated current: F: 120% of the rated current: Z/M/T: 170% of the rated current; H: 230% of the rated current), the frequency converter will stop acceleration while when the current is below the limited value, the converter will continue acceleration.

When this function is valid and the frequency converter runs steadily, its output current will rise very quickly due to too fast acceleration or too heavy load of the motor. When the current exceeds the limited value (G/S: 140% of the rated current; F: 120% of the rated current; Z/H/T: 170% of the rated current; H: 230% of the rated current), the frequency converter will reduce the output frequency, and when the current is below the limited value, the converter will accelerate again to the setting value.

^{0:} Invalid

F44: Pick up selection

factory setting: 0

This parameter is used for selecting pick up mode.

- 0: Invalid. Start from 0Hz or starting frequency.
- 1: Pick up when power down. When inverter power down instantly and restarts, motor keeps running at the current speed and direction.
- 2: Pick up when start. When power on, inspects the motor speed and direction, runs at the current speed and direction.

F45: Electronic thermal relay protection selection

factory setting: 1

factory setting: refer to the below

This function is to protect the motor when overheat happens to the motor without other thermal relays. Inverter's some parameters calculate the motor's high temperature, meanwhile estimating whether the current would make the motor overheat or not. Inverter stops output and display the protection information when electronic thermal relay protection function is valid.

0: Invalid

1: Valid

F46: Electronic thermal relay protection level

The current is set by the inverter when diagnosing the over heat of the motor. The protection takes effect in 1 minute when the current equals to the product of the motor's rated current multi-pled the value of F46, that is the actual current is F46 times of rated current.

The factory value is 150% for type G.

Section VI. Function Parameter Description

F47: Power consuming braking selection 0: Invalid

1: Safe mode

Only during the deceleration and inspection of DC bus voltage higher than the set value, this function takes effect.

2: General mode

Under any status, it takes effect only inspecting DC bus voltage higher than the set value.

Over voltage or over current probably occurs when inverter instantly decelerates or the load's fluctuation is big. This phenomenon occurs much easily when the load inertia is relatively big. Inside inverter DC high voltage is inspected over certain value, power consuming brake can be realized by output brake signal via external brake resistor.

F48: Fault reset times

factory setting: 0

During running, if over current (OC) or over voltage (OU) occurs, this function makes inverter automatically reset and run at the setting state when there was no fault. Reset times are based on this parameter, at most 10 times can be set. When it is "0", automatic reset function is invalid after fault occurrence. But if DC main circuit's main relay fault MCC or lack voltage LU fault occurs, the automatic reset is not limited by this.

Restart and runs normally after fault for over 36s, the previous fault rest times is set.

Fault last for over 10s then the fault reset function could not be executed.

F49: Fault reset time

factory setting: 1.0s

factory setting: 0

This function is for setting time interval of fault auto-reset. Inverter stops after fault, it takes more time.

For no-fault inspection than fault reset time, then fault auto-resets.

F50: Program running mode

- 0: Single circulation.
- 1: Continuous circulation.
- 2: Single circulation, continuous running at step 7 speed, and stop when receiving STOP command.
- The 3 program running modes are as below:
- e.g. 1 Single ciruculation

factory setting: 0

F51: Restart mode factory setting: 0 Stop during program running and reset restart mode. (Including normal stop

Section VI. Function Parameter Description

and fault reset)

0: Runs at the step 1 speed. Refer to the diagram below:

1: Runs at the speed before stop. Refer to the diagram below:

*F52: Reserved

*F53: Reserved

F54: Motor running direction

0: Forward command, motor forwards. 1: Forward command, motor reverses.

- T. Forward command, motor reverse
- F55: Motor reverse forbidden

0: Reverse is allowable.

1: Reverse is forbidden.

F56: Running time setting

factory setting: 0

factory setting: 0

factory setting: 0

Adjustment unit of actual running time. The unit describes the running time(multi step run time), the tens digit describes the acc/dec time(line acc/dec time, jog acc/dec time, multi step acc/dec time), the describtion is as below:

Acc/dec time	Tens digit	Run time	Unit
×1	0 ×1		0
×30	1	×10	1
		×100	2

F57: Percentage in energy saving running factory setting: 100%

This parameter is for minimum output voltage percentage in energy saving running For constant torque running, inverter can calculate the optimized output voltage to the load according to the load state. Calculation is invalid during acceleration or deceleration. This function is to save energy by lower the output voltage and enhance the frequency factors, this parameter confirms the minimum reduced output voltage; if the parameter is set 100%, the energy saving running mode is closed.

If energy saving is effective, inverter's actual voltage output value=inverter's rated output voltage × output voltage percentage × energy saving output voltage percentage.

ON express signal action; OFF express no signal action

When output signal select(o13-o17) 14, inverter's output frequency arrives or accesses FDT frequency set 1, output signal terminal actions; inverter's output frequency is lower than the set frequency, output signal does not action.

When output signal select(o13-o17) 15, firstly FDT frequency set 1 inspected, inverter's output frequency arrives or accesses FDT frequency

Section VI. Function Parameter Description

set 1, output signal terminal actions; after terminal action, FDT frequency set 2 inspected, inverter's output frequency is lower than FDT frequency set 2, output signal terminal does not action.

e.g. FDT frequency set 1 is 35Hz, FDT frequency set 2 is 30Hz, output signal terminal actions as above:

F60: Frequency inspection range

factory setting: 0.00/0.0Hz

This parameter defines frequency inspection range for adjusting I/O output function: 11 set frequency reaching the inspection range.

F61: Load type

factory setting: 0

The parameter defines the load type, the system automatically adjust the parameters according to the load type to satisfy different requirement of different load. Please inquir Powtran technician to select the right load type. Wrong load type may damage the equipment.

- 0: general
- 1: pump
- 2: Blower fan
- 3: Plastic jetting mould machine
- 4: Braiding machine
- 5: Hoister
- 6: Pumping jack
- 7: Belt conveyor
- *8~14: Reserved

F62: Terminal control modes

- 0: standard running control
- 1: 2-point running control
- 2: 3-point running control
- e.g.: Standard running control

e.g.: 2-point running control

factory setting: 0

e.g.: 3-point running control

STOP RUN	FWD (running in closed state)
FWD/ REV	STOP(stop in open state) REV (running forward in open state; running reverse in closed state)
	СОМ

MSS terminal distribution:

F62 terminal control mode Value STOP terminal		F63=1/2	F63=3	
3-point running control 1	2	SS3	SS1 and SS2 realize speed 3/acceleration	Jog reverse invalid
3-point running control 2	3	SS2	Multi-speed /acceleration invalid	SS3 jog reverse
3-point running control 3	4	SS1	Multi-speed /acceleration invalid	CC2 ich rouorco

Note: When terminal running control select 3-point running control (F62=2), if. F63 is1 or 2, SS1/SS2 executes 3-step speed/acceleration running, SS3 is only for 3-point running control; if.F63 is 3, SS3 is for jog reverse control in priority.

F63: MSS terminal function selection factory setting: 0 This parameter can control MSS multi-step speed or MSS multi-step acceleration.

0: Invalid.

1: MSS multi-step speed control. It is valid only when F04=0/1/2/3, multi-step speed in priority.

Level triggers, valid in low level.

- 2: MSS multi-step acceleration control. It is valid only when F04=0/1/2/3/8. Level triggers, valid in low level.
- 3: Jog forward/reverse control.

Jog reverse running with SS3 and COM short circuited, Jog forward

Section VI. Function Parameter Description

running with JOG and COM short circuited, previous set JOG direction is invalid.

Level triggers, valid in low level.

Note: F62=2 Terminal control mode is 3-point running control, SS3 is for jog forward/reverse control in priority.

4: Frequency setting mode switch

OFF when SS1, SS2, SS3 open to COM; ON when SS1, SS2, SS3 short circuited to COM.

SS3	SS2	SS1	Frequency setting mode switch	
OFF	OFF	OFF	Program running (F04=5) Run at spped 1(F51=0)	
OFF	OFF	ON	I2 (F04=2)	
OFF	ON	OFF	V2(F04=1)	
OFF	ON	ON	*Reserved	
ON	OFF	OFF	Program running(F04=5) Running at the speed before	
ON	OFF	ON	V2+I2(F04=3)	
ON	ON	OFF	Keyboard	
ON	ON	ON	Keyboard petentionmeter	

*5: Reserved

6: MSS time running function.

Running time is set by MSS terminal pulse signal. Running time is refreshed with the last terminal pulse signal, and is not cumulative. running time includes accelerate time, barring decelerate time. PRI is SS3>SS2>SS1.

Running parameter			SS1	SS2	SS3
	Keyboard and RS485	0	H00	H01	H02
	V2	1	V2	V2	V2
	12	2	12	12	12
F04	V2+I2		V2+I2	V2+I2	V2+I2
104	Keypad potentionmeter		Keypad potentionmeter setting		
	V2 Forward/Reverse		V2 Forward/Reverse setting		
	Keypad potentionmeter FWD/REV		Keypad p	otentionmeter	setting
	Accelerate/decelerate time		H14/H15	H16/H17	H18/H19
	Running time			H08	H09

Section VI. Function Parameter Description

factory setting: 0

*7: Reserved

F64: Selection of input terminal's polarity

Se	et		Polarity of In	put Terminal	
	2	Low level valid(close)		Low level	valid(close)
	J	Falling edge valid, rising edge invalid		Falling edge valid	rising edge invalid
1	1	High level valid(open)		High level	valid(open)
'	I	Rising edge valid, falling edge invalid		Rising edge valid,	falling edge invalid

Section VI. Function Parameter Description

F65: Monitor selection 2

factory setting: 1

Monitor the second objects, range from 0~15 (same as F00), valid when using keyboards JP6E7000 and JP6C7000. Please refer to the keyboard operation in the section III.

F66: Monitor selection 3

factory setting: 2

F65, F66 respectively select the first monitored object and the second monitored object which range from 0~15(the same as F00 monitored objects). They are valid when it is operated by JP6E7000 and JP6C7000. Refer to the section III: Operating keyboard.

F67: V/F curve set

F68: MSS speed control

F69: I/O group select

F70: CUR group select

F71: SPD group select

F72: PID group select

F73: SYS group select

F74: MOT group select

Selecting one of these above groups as expected, press PRG running into the relative group.

6-2. Other parameters

6-2-1. F67 V/F curve set [V/F]

factory setting: 5.00/50.0Hz

U00: V/F set frequency 1 User set the first frequency of V/F curve corresponding with V1.

U01: V/F set voltage 1 factory setting: 5% User set the first voltage percentage of V/F curve corresponding with F1, by the reference of inverter's rated output voltage 100%.

U02: V/F set frequency 2 factory setting: 10.00/100.0Hz User set the second frequency of V/F curve corresponding with V2.

U03: V/F set voltage 2

factory setting: 10%

User set the second voltage percentage of V/F curve corresponding with F2, by the reference of inverter's rated output voltage 100%.

U04: V/F set frequency 3 factory setting: 15.00/150.0Hz User set the third frequency of V/F curve corresponding with V3.

U05: V/F set voltage 3

U13: V/F set voltage 7

factory setting: 15%

User set the third voltage percentage of V/F curve corresponding with F3, by the reference of inverter's rated output voltage 100%.

U06: V/F set frequency 4 factory setting: 20.00/200.0Hz User set the fourth frequency of V/F curve corresponding with V4.

factory setting: 20%

U07: V/F set voltage 4 User set the fourth voltage percentage of V/F curve corresponding with F4, by the reference of inverter's rated output voltage 100%.

U08: V/F set frequency 5 factory setting: 25.00/250.0Hz User set the fifth frequency of V/F curve corresponding with V5.

factory setting: 25% U09: V/F set voltage 5 User set the fifth voltage percentage of V/F curve corresponding with F5, by the reference of inverter's rated output voltage 100%.

U10: V/F set frequency 6 factory setting: 30.00/300.0Hz User set the sixth frequency of V/F curve corresponding with V6.

U11: V/F set voltage 6 factory setting: 30% User set the sixth voltage percentage of V/F curve corresponding with F6. by the reference of inverter's rated output voltage 100%.

U12: V/F set frequency 7 factory setting: 35.00/350.0Hz User set the seventh frequency of V/F curve corresponding with V7.

factory setting: 35%

User set the seventh voltage percentage of V/F curve corresponding with F7, by the reference of inverter's rated output voltage 100%.

U14: V/F set frequency 8 factory setting: 40.00/400.0Hz User set the eighth frequency of V/F curve corresponding with V8.

U15: V/F set voltage 8 factory setting: 40% User set the eighth voltage percentage of V/F curve corresponding with F8, by the reference of inverter's rated output voltage 100%.

Section VI. Function Parameter Description

6-2-2. F68 MSS speed control [MSS]

H00: 1X Multi-step speed 1X	factory setting: 5.00/50.0Hz
H01: 2X Multi-step speed 2X	factory setting: 30.00/300.0Hz
H02: 3X Multi-step speed 3X	factory setting: 20.00/200.0Hz
H03: 4X Multi-step speed 4X	factory setting: 30.00/300.0Hz
H04: 5X Multi-step speed 5X	factory setting: 40.00/400.0Hz
H05: 6X Multi-step speed 6X	factory setting: 45.00/450.0Hz
H06: 7X Multi-step speed 7X	factory setting: 50.00/500.0Hz

Set the frequency of program running and the 7-step speed respectively. Achieve 7-step speed by short-circuit the terminal SS1, SS2, SS3 with COM combinatorially.

The definition of terminal multi-step speed is as follow: ON=connect with COM OFF=disconnect with COM

Speed Terminal	1X	2X	3X	4X	5X	6X	7X
SS1	ON	OFF	ON	OFF	ON	OFF	ON
SS2	OFF	ON	ON	OFF	OFF	ON	ON
SS3	OFF	OFF	OFF	ON	ON	ON	ON

When SS1, SS2, SS3 is open to COM at the same time:

F04	Setting frequency	Accelerate time	Decelerate time
0	Keyboard setting	F09	F10
1	V2 setting	F09	F10
2	I2 setting	F09	F10
3	V2/I2 setting	F09	F10

factory setting: 2.0s

H07: T1 Multi-step speed 1 running time T1

H08: T2 Multi-step speed 2 running time T2

H09: T3 Multi-step speed 3 running time T3 H10: T4 Multi-step speed 4 running time T4

- H11: T5 Multi-step speed 5 running time T5

H12: T6 Multi-step speed 6 running time T6

H13: T7 Multi-step speed 7 running time T7 factory setting: 2.0s Actual acc/dec time equals to the set acc/dec time multiples a time multiple which is decided by the tens digit of F56. Please refer to F56.

H14: Acceleration time at1	factory setting: 10.0s
H15: Deceleration time dt1	factory setting: 10.0s
H16: Acceleration time at2	factory setting: 10.0s
H17: Deceleration time dt2	factory setting: 10.0s
H18: Acceleration time at3	factory setting: 10.0s
H19: Deceleration time dt3	factory setting: 10.0s
H20: Acceleration time at4	factory setting: 10.0s
H21: Deceleration time dt4	factory setting: 10.0s
H22: Acceleration time at5	factory setting: 10.0s
H23: Deceleration time dt5	factory setting: 10.0s
H24: Acceleration time at6	factory setting: 10.0s
H25: Deceleration time dt6	factory setting: 10.0s
H26: Acceleration time at7	factory setting: 10.0s
H27: Deceleration time dt7	factory setting: 10.0s
Set the Acc/Dec time of 7 steps respectively. T	hev determine the

Acc/Dec time of 7 steps respectively. They determine the time needed to reach the speed, respectively depending on the acceleration time for acceleration or on the deceleration time for deceleration, but the time is not the actual time needed. Actual acc/dec time equals to the set acc/dec time multiples a time multiple which is decided by the tens digit of F56. Please refer to F56.

Definite acceleration and deceleration time for multi-step speed.

Definition of multi-step speed acceleration/deceleration time

at1: Step 1 acceleration time dt2: Step 2 deceleration time at2: Step 2 acceleration time dt3: Step 3 deceleration time

H28: Multi-step speed 1 running direction H29: Multi-step speed 2 running direction H30: Multi-step speed 3 running direction H31: Multi-step speed 4 running direction H32: Multi-step speed 5 running direction

```
factory setting: 0
```

Section VI. Function Parameter Description

H33: Multi-step speed 6 running direction H34: Multi-step speed 7 running direction

factory setting: 0

factory setting: 0

In program multi-speed I running, these parameters decide the direction of each speed.

The running direction	Setting value
forward	0
backward	1

In terminal multi-speed running:

When running control mode F05 = 0/1/2, these parameters decide the direction of each speed.

When running control mode F05 = 3, these parameters and terminal FWD/REV decide the direction of each speed together.

FWD=1 running direction	FWD=1 running direction	Setting value
forward	backward	0
backward	forward	1

6-2-3. F69 Input/output parameter [I/O]

factory setting: 10ms

o00: filter time of V2 signal input It may be 2~200ms. If the time is too long, setting frequency change is steady, but response speed will become bad; if the time is too short, setting frequency stability become badly, but response speed will be rapider.

o01: V2 minimum input voltage

factory setting: 0.00V

The minimum input voltage of input terminal V2, may be any value between 0~V2 maximum input voltage.

o02: V2 maximum input voltage

factory setting: 10.00V

The maximum input voltage of input terminal V2, may be any value between V2 minimum input voltage to 10V.

o03: I input filter time

factory setting: 10ms

It may be 2~200ms. If the time is too long, setting frequency change is steady, but response speed will become bad; if the time is too short, setting frequency stability become badly, but response speed will be rapider.

o04: I input minimum current

factory setting: 0.00mA

The minimum input current of input terminal I2, may be any value between 0~l2 maximum current.

o05: I input maximum current

factory setting: 20.0mA

The maximum input current of input terminal I2, may be any value between I2 minimum current to 20.00 mA.

e.g. V2 input 1~5V, o01=1V, o02=5V; I2 input 4-20mA, o04=4mA,

o06:DA1 output terminal

factory setting: 0

*o07: Reserved

Output signal range Output Value No output 0 No Function 1 Set frequency 0~max frequency 2 0~max frequency Actual frequency 3 Actual current G:2 times of rated current 4 0~1.35 times of rated output Output voltage 0~1.35 times of bus voltage 5 Bus voltage 6 **IGBT** temperature **0~80.0**℃ 0~200% 7 Output power 8 Output speed 0~max rotating speed 9 *Reserved -

o08: DA1 output lower adjustment o09: DA1 output upper adjustment factory setting: 0.0% factory setting: 100.0%

*o10~o11: Reserved

It is to set lower and upper DA1/DA2 output signal. e.g. DA1 1-5V Output voltage o08=10.0%, o09=50.0% DA2 4-20mA Output current o10=20.0%, o11=100.0% **Note:** Each output terminal with 2 selection: voltage output (0~10V) and current output (0~20mA), the default selection is voltage output. Selecting voltage output, short circuit DA1V of JP4 (on the control card); selecting current output, short circuit DA1C of JP4 (on the control card).

Diopidy		
0	No function	
1	Fault alarm	
2	Over current inspection	
3	Over load inspection	
4	Over voltage inspection	
5	Lack voltage inspection	
6	Low load inspection	
7	Over heat inspection	
8	Running state with command	
9	9 *Reserved	
10	Motor reverse	
11	Set frequency arrival	
12	Upper limit frequency	
13	Lower limit frequency	
14	FDT frequency 1 arrival	
15	FDT frequency level inspection	
16	0 speed running	
17	Position arrival	
18	*Reserved	
19	Program running 1 cycle finished	
20	Speed pursue mode inspection	

Section VI. Function Parameter Description

21	Running state without command	
22	Inverter reverse command	
23	Deceleration running	
24	Acceleration running	
25	*Reserved	
26	*Reserved	
27	Inverter's rated current arrival	
28	Motor's rated current arrival	
29	Input lower frequency arrival	
30	FDT frequency set 2 arrival	
31	*Reserved	
32	*Reserved	

o19: Minimum input frequency

factory setting: 0.00/0.0Hz

o20: Maximum input frequency

factory setting: 50.00/500.0Hz

Define the connection of analog input and frequency, o19 is anolog V2, I2 sets the frequency to minimum voltage/current; o20 is V2, I2 sets the frequency to maximum voltage/current, the connection is effective when F04 is 1, 2, and 3.

If o19<o20, it is positive input, if o19>o20, it is negative input.

If V2 inputs 1~5V voltage, 0.00~50.00Hz, parameters are set as below: O01=1V, o02=5V, O19=0.00Hz, o20=50.00Hz.

If V2 inputs $4\sim20mA$ current, $45.00\sim30.00Hz$, the parameters are set as below:

O04=4mA,o05=20Ma, o19=45.00Hz, o20=30.00Hz

*6-2-4. F70 Current loop parameters [CUR] Reserved

*6-2-5. F70 speed-loop parameter [SPD] Reserved

*6-2-6. F72 PID parameter [PID] Reserved

Section VI. Function Parameter Description

6-2-7. F73 System parameter [SYS]

y00: restore factory setting

factory setting: 0

0: not restore 1: restore

When the parameter is valid, all the parameters will restore the setting value before factory.

Those parameters which have no factory value will reserve the setting value.

y01: Fault record 1

y02: Fault record 2

y03: Fault record 3

y04: Fault record 4

y05: Fault record 5

These parameters register fault which happen in the last several times, and can inquire about the value of monitor object at the time of fault by 'PRG' and "plus or minutes" key.

The monitor object of fault state:

0: fault style

The fault code is expressed as following:

Serial number	LED display	Fault message
0	0C_C	Over current signal from current inspected circuit
1	OCFA	Over current signal from drive circuit.
2	OC_2	Output over current, OC protection when current exceeds motor's 2 times of rated current
3	OU	over voltage
4	OL	over load
5	-	*Reserved
6	OH	over heat
7	LU	under voltage
8	UL	under load
9	EEPr	EEPROM error
10	OC_P	System is disturbed or impacted by instant over current
11	E_FL	external fault
12	-	*Reserved
13	-	*Reserved
14	DATE	Time limit fault

1: output frequency at the time of fault

The output frequency of the inverter at the time of fault

2: output current at the time of fault

The actual output current at the time of fault

3: output voltage at the time of fault

The actual output voltage at the time of fault

4: running state at the time of fault

The running state at the time of fault

LED display expresses the running state, and explains as following:

The first bit of LED		The second bit of LED		The third bit of LED	The fourth bit of LED	
F	forward command	F	forward state		А	accelerate
R	reverse command	R	forward state	compartmentation code	D	decelerate
S	stop	S	stop state	code	E	running in a even speed
	command				S	stop state

y06: fault record reset

factory setting: 0

0: no action, the fault records retains

1: the fault records resets

y07: rated output current

The rated output current of the inverter.

y08: rated input voltage

The rated input voltage of the inverter. It would be set as per inverter input voltage level before leaving factory.

y09: product series (only can be inquired)

y10: software version (only can be inquired)

*y11~y12: Reserved

y13: total running time setting factory setting: 1

It sets whether add the using time of the machine every time or not. 0: automatically clear after start Section VI. Function Parameter Description

1: accumulate the time after start.

y14: total time unit

It sets the unit of the total time.

0: the unit is hour 1: the unit is day

y15: Manufacture Date - year

The parameter only can be inquired.

y16: Manufacture Date-month-day

The parameter only can be inquired.

y17: decode input

In the state of locked parameter, LED displays the times of error input. There are three times input limit, if input is wrong in continuous three times, the systems will prohibit input of the password. It can prevent testing password in an illegal way, and need restart the machine to input again. Once the input is right in any time during three times input limit, the parameter is unlocked.

y18: password input

The parameter sets the password, and the range is 0~9999. After setting the password, parameter locks and keyboard displays "code"; if the password is unlocked or password input is right, the keyboard will display "deco".

6-2-8. F74 motor parameter [MOT]

b00: motor poles

factory setting: 2

It is the half of the magnet poles of the motor.

factory setting: (y07) A

The rated current can be set, but can't be more than the rated current of the inverter. The parameter confirms the OL protection capability of the motor and energy-saving running.

To prevent self-cooled motor form overheat when running in a low speed, and the motor capacity change when motor character change little, the user can correct the parameter to protect the motor.

The factory value is decided by power and default value is y07.

b02: motor rated voltage

b01: motor rated current

The voltage in the rated state. If the rated voltage is lower than the voltage of the supply power, it is necessary to check the insulated intension.

b03: motor rated speed

factory setting: 1500rpm

The speed when motor works in the rated power.

b04: motor rated frequency

factory setting: 50.00/500.0Hz

- -

factory setting: 0

factory setting: leaving factory date

factory setting: leaving factory date

Motor's output frequency under rated state.

b00~b04 are the motor's nameplate parameters which touch the precision.Set the parameters according to the motor's nameplate.

Excellent vector control performance requires exact motor parameters. Exact parameters are base on the correct setting of motor's rated parameters.

To assure the control performance, please match the right motor as per the inverter's standard, motor rated currentis limited between 30%~120% of inverter rated current.

b05: motor un-load current factory setting: (y07×40%)A The un-load current, and affects the degree of the slip compensation directly.

The factory value is decided by power and default value is y07×40%.

b06: stator resistorfactory setting: 0.000ohmThe stator resistor, when b13 is 1,the system scales automatically.b07: rotor resistorfactory setting: 0.000ohm

b07: rotor resistor factory setting: 0.000ohm The rotor resistor, when b13 is 1, the system scales automatically.

b08: leakage inductancefactory setting: 0.0mHThe leakage inductance of motor's coil winding, when b13=1, system

measures automatically.

b09: mutual inductance factory setting: 0.0mH
The mutual inductance of motor's coil winding when b13-1 system

The mutual inductance of motor's coil winding, when b13=1, system measures automatically.

b05~b09 is the motor's basic electric parameters, these parameters is essential to achieve vector control calculation.

When b01 is set, b05~b09 would automatically reset to the defaulted standard Y series 4 poles asynchronism motor's parameters. Inverter could get the motor parameters without automatic parameters setting.

If the inverter could not meet with the requirement, use b13 motor parameters setting to get the exact motor parameter. If the right motor parameters are available, it could be input manually.

*b10~b13: Reserved

b14: Rotate speed display plus

factory setting: 100.0%

Adjust the display of motor's actual running speed, refer to F00 monitor select: 6 Actual motor speed.

b15: Reserved	factory setting: 0
b16: Reserved	factory setting: 0
b17: Reserved	factory setting: 0

Section VII. Fault Diagnosis and Solutions

Problems	Possible causes	Solutions	
Keyboard can	Control mode setting is wrong	Check F05.	
not control	Frequency setting is wrong	Check F04.	
Potentiometer can't regulate	Control mode setting is wrong	Check F05.	
speed	Frequency setting is wrong	Check F04.	
	LED monitor indicates error message		
The	No voltage exists between terminals P and N.	Check the voltage at R, S or T and charging circuit.	
motor does not	U, V or W terminals produce no output or abnormal output.	Check the control mode and frequency parameter. Check the terminal condition if it is operated by an external terminal.	
rotate	Re-start after powering down or free run	Remember the set operating state.	
	Too much load on the motor	Check and lower the load.	
Over current	fault display OC-P	System is disturbed or instant over current	
OC	fault display OC-C	OC signal from current self-inspected citcuit impact	
	fault display OC-FA	OC signal from drive circuit	
	fault display OC-2	Output over current, and current exceed 2 times of motor's rated current.	
	Over current during acceleration	Reset or modify the parameters of the functions F09, F18, F19.	
	Over current during deceleration	Reset or modify the parameters of the functions F10, F20, F21.	
	Over current during operation	Check the load change and eliminate it.	
	Over current during starting or operation from time to time	Check if there is slight short circuit or grounding.	

Section VII. Fault Diagnosis and Solutions

	Disturbance	Check the earthing wire, screened cable grounding and terminals.
overload Ol	Too much load	Lower the load.or enlarge b01 in the allowable load range or enlarge F46 to raise the protection level.
UL	Inappropriate parameter is set	Modify the parameters of the functions b01.
0	Power voltage exceeds the limit	Checking voltage is right or not. Frequency inverter rated voltage setting is right or not.
Over voltage	Too fast deceleration	Modify the parameters of the functions F10.
00	The load has too much inertia	Reduce the load inertia, or raise the capacity of frequency converter, or use B type converter or add a braking unit.
	Too low power voltage	Checking voltage is right or not. Frequency inverter rated voltage setting is right or not.
Low voltage LU	The power is off transiently	Add options of capacitor boxes.
	The line has too small capacity or great rush current exists on the lines.	Make renovation on power supply system.
Overheat	Too high ambient temperature	Improve ambient conditions.
OH	The carrier frequency is too high	Check the setting value of function F15.

Note:

- Switch off the power supply, and do not touch the PCBs and any parts inside in five minutes after the charging indicator light (! CHARGE) goes off. Ensure the capacitance has been discharged completely by measuring with the instrument before work inside. Otherwise, there is a danger of electric shock.
- Do not touch the PCB or IGBT and other internal parts unless actions have been taken to prevent the static electricity. If not, the components may be damaged.

Section VIII. Standard Specifications

8-1. Specification

Voltage	220V 1Φ	220V (240V)	380V (415V)
(KW)	(A)	(A)	(A)
0.4	2.5	2.5	-
0.75	4	4	2.5
1.5	7	7	3.7
2.2	10	10	5

8-2. Standard specification

		items	specifications		
power		age and uency	Single-phase 200~240V,50/60Hz Three-phase 200~240V,50/60Hz Three-phase 380~415V,50/60Hz		
nod	Allo rang	wable Fluctuation je	voltage: ±15% frequency: ±5%		
	Control system high performance vector control inverter based on DSP				
	Out	put frequency	G:0.00~800.0Hz, the maximum frequency range is 10.00~800.0Hz		
	con	trol method	V/F control, V/F+ PG control, vector + PG control		
		eform produce hods	asynchronous space vector PWM, step less and subsection synchronous space vector PWM,2 phase optimized vector PWM		
	Auto torque boost function Accelerate /decelerate control		Realize low frequency (1Hz) and large output torque control under the v/f control mode.		
control			Acceleration/Deceleration S curve subsection set mode. The maximum running time is 26 hours.		
-	Pro	gram running control	7 step speed program running, the maximum running time is 88 hours.		
		uency setting uracy	Digital references:0.01Hz(300 Hz and below),0.1 Hz(above 300 Hz) Analog references:0.05Hz/60Hz		
	freq	uency accuracy	Speed control tolerance 0.01%(25°C±10°C)		
	V/F	curve mode	Linear,square,8 V/F curve set by user		
	Ove	r load capability	G:150% for one minute, 200% for 0.1 second		
	slip	compensation	0~10% automatic slip compensation		
		running method	Keypad/Terminal		
running	signal	frequency setting	There are 10 frequency setting modes, including DC 0~10V, DC 0~20mA, DC 4~20mA, potentiometer on the keyboard.		
runr	out	start signal	forward, reverse		
	Input	Multi-segment speed	can set 7 steps speed at most(using multi-function or program running)		

Section VIII. Standard Specifications

		M	lti-segment	At most 8 steps acceleration can be set (using multi function terminals or
	acceleration			program running.)
		ins	stant stop	Interrupt controller's output.
	traverse running			Program control running
	jog			running in low speed
	fault reset			When the protection function is affective, system can reset fault state automatically.
		PID fe	edback signal	DC 0~10V, DC 1~5V, DC 0~20mA, DC 4~20mA
	nal	running state		motor state display, stop, accelerate/decelerate, seven-speed, program running state
	sigı	fa	ult output	relay fault output: AC125V 3A, DC 30V 3A
running	Output signal	ana	llog output	1 analog output, 8 signals could be selected: frequency, current, voltage, temperature, etc, the output signal range is 0~10V/0~20mA.
run		out	put signal	6 output signals, each one with 20 signals for option.
	runr	ning fund	ction	Limit frequency, skip frequency, torque difference compensate, reverse protection, automatic adjustment
	DC	brake		On base of non-OC, internal PID can regulate braking current to ensure enough braking torque.
	inve	rter pro	tection	Over voltage, under voltage, over current, over load, overheat, over current stall, over voltage stall, external fault.
u	IGBT temperature display		erature	Display of current IGBT temperature
nctic	inve	rter fan	control	Temperature of starting the fan can be set.
Protection function		restart after momentary power loss		less than 15ms:continue running More than 15ms:automatic inspection of motor's speed, restart after transient power down.
PI	speed starting pursue mode		ng pursue	inverter pursue motor speed automatically before starting
		parameter protection function		protect inverter's parameter by setting password and decode
display	En Di	CD glish splay +	running message	set frequency, actual frequency, actual current, actual current percentage, DC bus voltage, actual output voltage, actual motor's speed, total running time, IGBT temperature, motor output power percentage. Display of 3parameters simultaneity at most: F00,F65 and F66.
		ED board	fault message	Store 5 fault messages at most, and can inquire about fault style, voltage, current, frequency and the work state at the same time
tr	environment temperature			-10 °C ~ 40 °C
environment	storage temperature		emperature	-20 °C ~65 °C
viro	en	vironme	ent humidity	Less than 90 % RH
en		Height /	libration	less than 1,000 m, less than 5.9m/s ² (=0.6g)
	application place		ion place	where there is no rust gas, no flammability gas, no grease and dust
	C00	oling me	thods	Forced air cooling and natural cooling

Section VIII. Standard Specifications

8-3 Sharp Size

8-4 External Keyboard size

JP6E7000/ JP6C7000:

Fixed on the panel, hole's dimension: $(131\pm0.1)\times(70.8\pm0.1)$

Section VIII. Standard Specifications

C

18

6

Section VIII. Standard Specifications

Small Keyboard boxJP5D7000:

Fixed on the panel, hole's dimension: (94.5±0.1)×(61.3±0.1)

JP5E7000:

JP3E7000:

71

Section IX. Maintenance

9-1 Inspection and Maintenance

Under normal working conditions, in addition to daily inspection, the frequency converter should be subject to regular inspection (for example inspection for overhaul or as specified but at an interval of six months at most). Please refer to the following table in order to prevent faults.

Check D	time R	Check point	Check item	Check to be done	Method	Criterion
\checkmark		Display	LED and LCD display	Visual check		As per use state
\checkmark	\checkmark	Cooling system	Fan	If abnormal noise or vibration is produced.	Visual and audible check	No abnormal sound or vibration
\checkmark		Body	Surrounding conditions	Temperature, humidity, dust content, harmful gas, etc.	Check visually, by smelling and feeling	As per Section 2-1
\checkmark		Input/ output terminal	Voltage	If input, output voltage is abnormal	Measure at R, S, T and U, V, W terminals	As per standard specifications
		Main	Overall conditions	If the fastenings come loose, if any signs show overheat, discharging, or too high dust content, or the air piping is blocked	Check visually, tighten the fastenings, and clean the related parts	No abnormal conditions
	\checkmark	circuit	Electrolytic capacitance	If there is abnormal appearance	Check visually	No abnormal condition
			Current-conducting leads or blocks	If the parts come loose	Check visually	No abnormal condition
			Terminals	If the screws or bolts come loose	Tighten the loose screws or bolts	No abnormal condition

"D" means daily check and "R" means regularly check.

"v" means need daily check or regularly check

For inspection, do not disassemble or shake the parts without reason, and still less pull off the plug-in-parts at random. Otherwise, the unit will not operate normally, or can not enter the mode of fault display, or causes faults of components or even parts of the main switch components IGBT module

Section IX. Maintenance

is damaged.

If measuring is necessary, the user should note that much different results will be gained possibly if the measuring is performed with different instruments. It is recommended that the input voltage be measured with pointer-type voltmeter, output voltage with rectification voltmeter, input and output current with tong-test ammeter, and power with electrically-driven wattmeter.

9-2. Periodically-Replaced Parts

In order to ensure the operation reliability of the frequency converter, in addition to regular maintenance and inspection, all the parts suffering long-term mechanical wear should be replaced at a regular interval, which includes all cooling fans and the filtering capacitors of main circuits for energy buffer and interchange and PCBs. For continuous use under normal conditions, these parts can be replaced according to the following table and the operating environment, loads and the current state of frequency converter.

Part name	Interval for replacement
Cooling fan	1~3 years
Filtering capacitor	4~5 years
PCB (printed circuit board)	5~8 years

9-3. Storage

The following actions must be taken if the frequency converter is not put into use immediately after delivery to the user and need to keep well for the time being or stored for a long time:

- X Stored in a dry and adequately-ventilated place without dust and metal powder at the temperature specified in the specifications.
- If the frequency converter is not put into use after one year, a charge test should be made, so as to resume the performance of the filtering capacitor of main circuit in it. For charging, a voltage regulator should be used to slowly increase the input voltage of the frequency converter until it reaches the rating, and the charge should last more than 1~2 hours. This test should be made at least once a year.
- % Don't perform breakdown test at random, for this test will cause shorter life of the frequency converter. The insulation test must be performed after the insulation resistance is measured with a 500-volt mega ohm and this value must not be less than 4M Ω .

9-4. Measuring and Judgment

- If the current is measured with the general instrument, imbalance will exists for the current at the input terminal. Generally, differing by not more than 10% is normal. If it differs by 30%, inform the factory to replace the rectification bridge, or check if the error of three-phase input voltage is above 5V.
- If the three-phase output voltage is measured with a general multi-meter, the reading is not accurate due to the interference of carrier frequency and only for reference.

Section X. Options

The series can acquire the peripheral equipment by user because of the different using condition and requirement. See the wiring diagram as below:

10-1. MCCB OR ELCB

As power switch of the inverter, MCCB or ELCB can protect supply power, but can't control inverter to run or stop.

10-2. Noise filter

The filter is used to restrain the conduction of electrical magnetic wave interference noise produced by the converter or shock the interferential form

radio or momentary concussion. The common size of 3-phase EMI noise filter is shown as following: confirm the power supply is 3-phase three lines or 3-phase four lines or single phase. Earthling wire is as short as possible, try to place the filter near the converter.

Please choose EMI filter when the converter is used in residential area, commercial area, science area or other. Please need to prevent magnetic interference, or need meet CE, UL, and CSA standard. **Note:** If needing the filter, please connect with our company.

10-3. Connector

It can cut off the supply power in action of the system protection function, to prohibit fault enlarging. But can't control the motor start or stop by connector.

10-4. Braking Unit & braking resistor

There is braking unit inside when using "B" type frequency converter, the maximum braking torque is 50%. Please choose braking resistor according to the following table:

Inverter (V)	Inverter (KW)	Brake resistor (Ω)	Brake resistor (W)
	0.75	200	120
220V	1.5	100	300
	2.2	70	300
	0.75	750	120
380V	1.5	400	300
	2.2	250	300